

## **PED: Pedestrian Environment Designer**

James McIlveen, Steve Maddock, Peter Heywood & Paul Richmond

Department of Computer Science, The University of Sheffield





## The Challenge

- Pedestrian simulations during development of pedestrian areas
  - Building design, evacuation planning
- Heavily dependent on environmetal interaction
- Environment creation is a difficult







## Aims

- How can we produce environments
  - Easily
  - Quickly
  - Minimal technical knowledge
- Can we provide interactive, iterative development?

- 1. Environment Design Interface
- 2. FLAME GPU simulation
- 3. Connection between UI & FLAME GPU



# Background



## **Pedestrian Simulation**

- Microscopic simulation via Agent Based Modelling (ABM)
  - Simulate individuals in the system
  - Local Interaction
  - Natural method to describe microscopic models <sup>1</sup>
- Used to evaluate performance of an environment<sup>2</sup>
- ABM are computationally expensive <sup>3</sup>
  - GPU acceleration provides performance but adds complexity



<sup>1</sup> Bernhardt, K. "Agent-based modeling in transportation." Artificial Intelligence in Transportation 72 (2007).
 <sup>2</sup> Teknomo, Kardi. "Application of microscopic pedestrian simulation model."Transportation Research Part F: Traffic Psychology and Behaviour 9.1 (2006)
 <sup>3</sup> Algers, Staffan, et al. "Review of micro-simulation models." Review Report of the SMARTEST project (1997).



#### Flexible Large-Scale Agent Modelling Environment for GPUs

- "Template based simulation environment" for agent based simulation on GPUs<sup>1</sup>
- High level interface for describing agents abstracts complexities of GPU<sup>2</sup>
- State-based agent representation
- Message-based communication







#### http://flamegpu.com

<sup>1</sup> Richmond, P. "FLAME GPU technical report and user guide." Department of Computer Science Technical Report CS-11-03 (2011).

<sup>2</sup> Richmond, Paul. "Resolving conflicts between multiple competing agents in parallel simulations." European Conference on Parallel Processing. Springer International Publishing, 2014.



## **Simulation Model**

- Pedestrians enter simulated region at entrance
- Travel towards target exit
- Force Vector Fields (FVFs)
  - Grid of force vectors
  - Global navigation to target exit
  - Obstacle avoidance (solid objects)
- Social-Force Model
  - Local Collision avoidance
  - Based on implementation by Karmakharm<sup>1</sup>
- GUI is primarily tool to create Force Vector Fields



#### Pedestrian Simulation of London area



**Example FVF** 

<sup>1</sup> Karmakharm T., Richmond P., Romano D. M.: Agentbased large scale simulation of pedestrians with adaptive realistic navigation vector fields. TPCG 10 (2010), 67–74. 3



# Solution



2

3

4

## **Pedestrian Environment Designer**

Layer-centric GUI for Environment Creation Inspired by graphic tools such as Adobe Photoshop, GIMP etc

Environment Compilation Layers converted to Force Vector Fields and combined

**FLAME GPU Simulation** High Performance GPU accelerated simulation

Real-time Environment Update Update the environment during runtime for immediate feedback





## Layer-centric Editor

- Environment discretised as 2D grid (ie. Bitmap)
- Layers map to specific behaviour
- Many layers combine for full environment
  - Entrance/Exit, Collison, Attraction, Avoidance, Interest, Reference
- Bitmap tools: Rectangle, Brush ...
- Settings: Emission Rates, disable layers …





| Behavioural Environment Layers                                                      |   |
|-------------------------------------------------------------------------------------|---|
| 🥼 👫 🗶 📈                                                                             |   |
| Road avoidance<br>Avoidance layer<br>Strength: 6 +<br>V Layer enabled               | ^ |
| Exit blocker<br>Collision layer<br>Blocks navigation<br>Layer enabled               |   |
| Inaccesile roads      Collision layer      ✓ Blocks navigation      ✓ Layer enabled |   |
|                                                                                     | ~ |





## **Environment Compilation**

- Converts bitmap layers to FLAME GPU compatable files
- Collision layers combined to single FVF
- Navigation FVF created per exit
  - Iterative Dijkstra Floodfill
- FVFs smoothed
  - Avoid diagonal convergence
  - Nearest neighbour average









#### Simulation

- High Performance Simulation via FLAME GPU
- Efficient Visualisation via GPU Instancing

#### **Interactive Update**

- Recompiling environment during simulation causes immediate update
- Environment encoded in binary to reduce run-time parsing
- File change causes copy of new environment onto GPU









## **Example: Sheffield Station**



Avoidance Trains + Entrance/Exit Interest Attraction Collision Reference

Video



## **User Testing**

- Evaluate UI usability for non-technical authors
- Written instructions to create sample model
- Asked to create a local environment
  - St George's Church, Sheffield
  - Familiar to the users
- Maximum of 1 hour to produce visuallyconvincing pedestrian simulation







## **User Testing Results**

- Participants all felt
  - Intuitive
  - Easy to use
  - Created realistic looking models
  - Valued dynamic updates
- 44 minutes average time taken
- 14 to 23 layers used
- 90 to 210 pedestrians
- User models not validated















# Conclusion



#### Conclusions

- Suitable for complex environments
- Usable by non-technical authors
  with minimal training
- Dynamic update offers immediate feedback & iterative development

# 

#### **Future Work**

- Vector tools for creating environments
- Multiple levels (i.e. stairs, bridges)
- Improved pedestrian simulation
  - Guidance Fields, Continuum dynamics





# Thank you

#### shef.ac.uk/dcs/research/groups/visual-computing

s.maddock@sheffield.ac.uk p.heywood@sheffield.ac.uk p.richmond@sheffield.ac.uk