

Road Network Simulation using FLAME GPU

Peter Heywood, Paul Richmond & Steve Maddock

Department of Computer Science, The University of Sheffield

Introduction

Gipps' Car Following Model

Implementation

Experiments & Results

Conclusions & Future Work

Introduction

Road Network Simulation

- Increasing traffic demand globally
 - UK projected increase between 2010 & 2040: [3]
 - Up to 42% increase of car ownership
 - 19% to 55% growth in UK road traffic
- Poor utilisation of existing infrastructure
- Need for improved road simulation systems [5, 10]
- Used for planning & trialling road network changes
- Cheaper & less disruptive than real world trials

An example of traffic microsimulation (SUMO)

Microsimulation, Agent Based Modelling & the GPU

Microsimulation & Agent Based Modelling (ABM)

- Bottom up simulations individual level with local interactions [8]
- ABM provides a natural method for describing agents and behaviours
 - $\cdot\,$ allows emergence of more complex behaviour
- Good for modelling congested transport networks

Why General Purpose computing on Graphics Processing Units (GPGPU)?

- Increased performance due to massively parallel architecture
- Microsimulation is well suited for GPGPU computing [9, 11]
 - However it is **not** embarrassingly parallel

- \cdot Demonstrate performance of road network simulation using FLAME GPU
- Evaluate performance scalability using an artificial road network.
 - Scale population size
 - Scale population and environment
- Demonstrate interactive visualisation using instancing

Gipps' Car Following Model

- Key vehicle behaviour
- $\cdot\,$ Drive at desired speed without colliding into other vehicles
- Considering factors such as reaction time, vehicle limitations, neighbouring vehicles
- Many car following models exist
 - Safety-distance models
 - Psycho-physical models

Gipps' Car Following Model defined in 1981 by Peter Gipps

- Safety Distance Model
- Considers driver & vehicle characteristics
- Only considers the preceding vehicle
- \cdot One of the most commonly used models

"The model should mimic the behaviour of real traffic" $^{[4]}$

"parameters which correspond to obvious characteristics of drivers and vehicles" [4]

"should be well behaved when the interval between successive recalculations of speed and position is the same as the reaction time" $^{\rm [4]}$

Gipps' Car Following Model Equation

$$v_n(t+\tau) = \min\left\{v_n(t) + 2.5a_n\tau(1-v_n(t)/V_n)(0.025+v_n(t)/V_n)^{\frac{1}{2}}, \\ b_n\tau + \sqrt{b_n^2\tau^2 - b_n[2[x_{n-1}(t) - s_{n-1} - x_n(t)] - v_n(t)\tau - v_{n-1}(t)^2/\hat{b}]}\right\}$$

an	the maximum acceleration of vehicle <i>n</i>	
bn	<i>b_n</i> the most severe braking that the vehicle <i>n</i> will undertake	
sn	the effective size of vehicle <i>n</i> , including a margin	
Vn	the target speed of vehicle n	
x _n (t)	(t) the location of the front of vehicle n at time t	
vn(t)	v _n (t) the speed of vehicle n at time t	
τ	au constant reaction time for all vehicles	
ĥ	estimate of leading vehicles most severe braking	

Notation for variables used by Gipps' car following model

Free-flow and Braking components of Gipps' Car Following Model

- Time-step should be set to reaction time au
- Assumes drivers:
 - Drive in a safe manner
 - Can make accurate observations

Implementation

Artificial Road Network

- Scales consistently unlike real world networks
- Single lane uniform grid
- Grid made of N rows and columns
- 2 sections of road between each adjacent junction
- N^2 junctions and 4N(N-1) one-way roads

N = 3 N = 4 N = 5

FLAME GPU is a "template based simulation environment" for agent based simulation on Graphics Processing Unit (GPU) architecture ^[7]

- Agents are represented as X-Machines
- Agents can communicate via globally accessible message lists
- Messages are crucial for interaction
- Message lists can be partitioned to "ensure the most optimal cycling of messages"^[7]

FLAME GPU X-machine with message list

There are currently 3 defined message partitioning schemes

- \cdot Non-partitioned messaging
 - $\cdot\,$ All to All
- Discrete partitioned messages
 - 2D non-mobile agents only (i.e. Cellular Automata)
- \cdot Spatially partitioned messages
 - Continuous space
 - Requires radius and environment bounds

Aims to reduce the size of message lists

Implementing Gipps' Car Following Model using FLAME GPU

- Each vehicle represented by an agent
- Initial values generated with *python* script and stored in a *FLAME GPU XML file*
- Road network stored in CUDA constant memory
 - Does not change
 - Agents interact with same network
 - CUDA Read-Only Data Cache could allow larger road networks (> 64kB of memory)

For each step in the simulation

- Agents output their observable properties (outputdata)
- Agents iterate through their message lists for the lead vehicle (inputdata)
 - Gipps' car following model is applied using the lead vehicle information
 - Forward Euler used to calculate location and velocity
 - New roads randomly assigned at junctions

State Diagram for vehicle agents

Experiments & Results

Experiments, Model Parameters, Hardware

Experiments

	Grid Size	Agent Count	Road Length
Fixed Grid	N = 16	256 to 262144	10000 <i>m</i>
Scaled Grid	N = 2 to $N = 24$	512 to 141312	1000 <i>m</i>

(64 vehicles per 1000*m*)

Model Parameters proposed by Gipps

an	sampled from the normal distribution $N(1.7, 0.3^2) m/sec^2$
bn	-2.0a _n
Sn	sampled from the normal distribution $N(6.5, 0.3^2)$ m
Vn	sampled from the normal distribution $N(20.0, 3.2^2)$ m/sec
au	2/3 seconds
ĥ	the minimum of -3.0 and $(b_n - 3.0)/2 m/sec^2$

Hardware/Software

- FLAME GPU 1.4 for CUDA 7.0
- Intel Core i7 4770K
- NVIDIA Tesla K20c

Fixed Grid Network

- Spatially partitioned messaging outperforms non-partitioned messaging
- Smaller radii outperforms larger radii beyond overhead
- Distinct gradient change at 2¹³ agents

Fixed Grid Network - Per Agent

- Distinct gradient change at 2¹³ agents hardware utilisation vs larger message lists
- Non-partitioned outperformed by partitioned messaging
- \cdot r = 250 scales much better per agent

Non-partitioned	262144
Partitioned $r = 5000$	19662
Partitioned $r = 2500$	9720
Partitioned $r = 250$	309

Maximum message count

Fixed Grid Network - Kernel Profiling

Average Kernel Execution Times

- Kernel times averaged over 10 iterations
- Some Kernels omitted
- 32768 Agents
- Spatial Partitioned messaging with r = 250
- · inputdata kernel is dominant

Fixed Grid Network - Kernel Profiling

Scaled Grid Network

Average iteration execution time for increasing Grid Size N with a fixed vehicle density of 64 agents per 1000m

- $\cdot\,$ As scale increases performance decreases
- Spatially partitioned messaging outperforms non-partitioned beyond overhead
- Spatial partitioning scales better
- Up to 103x performance increase for spatial partitioning than non-partitioned

Number of Agents & Grid Size

Interactive Visualisation

- Cross platform C++, OpenGL & libSDL^[2]
- OpenGL Interop^[6] & instanced rendering^[1] used to avoid unnecessary host-device memory transfers
- *N* = 8, length 1000*m*, 8192 vehicles & 1000 iterations
- NVIDIA GeForce GTX 660

Console	15079 <i>ms</i>
Visualisation	16291 <i>ms</i>
Increase	1.08 <i>x</i>

Conclusions & Future Work

- Two experiments carried out, demonstrating suitability of FLAME GPU for road network simulation
- Scaling behaviour has been investigated
- · Performance difference between messaging communication schemes highlighted

- Message partitioning techniques for network based communication
- Support wider range of road networks
- Non-uniform vehicle distribution
- Increased accessibility through visualisation of aggregate data on the GPU
- · Increased variation of vehicles using procedural instancing

Thank You

ptheywood.uk ptheywood1@sheffield.ac.uk

flamegpu.com

- [1] OpenGL SDK glDrawArraysInstanced manpage. https: //www.opengl.org/sdk/docs/man/html/glDrawArraysInstanced.xhtml
- [2] Simple DirectMedia Layer (libSDL). https://www.libsdl.org/
- [3] Department for Transport: Road traffic forecasts 2015. https://www.gov.uk/ government/uploads/system/uploads/attachment_data/file/260700/ road-transport-forecasts-2013-extended-version.pdf (Mar 2015)
- [4] Gipps, P.G.: A behavioural car-following model for computer simulation. Transportation Research Part B: Methodological 15(2), 105–111 (1981)
- [5] Neffendorf, H., Fletcher, G., North, R., Worsley, T., Bradley, R.: Modelling for intelligent mobility (Feb 2015)

References II

- [6] Nvidia, C.: Cuda c programming guide. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (Mar 2015), last accessed 2015-03-30
- [7] Richmond, P.: Flame gpu technical report and user guide. Tech. rep., technical report CS-11-03. Technical report, University of Sheffield, Department of Computer Science (2011)
- [8] Sommer, C., Yao, Z., German, R., Dressler, F.: On the need for bidirectional coupling of road traffic microsimulation and network simulation. In: Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models. pp. 41–48. ACM (2008)
- Strippgen, D., Nagel, K.: Multi-agent traffic simulation with cuda. In: High Performance Computing & Simulation, 2009. HPCS'09. International Conference on. pp. 106–114. IEEE (2009)

- [10] UK Department for Transport: Quarterly Road Traffic Estimates: Great Britain Quarter 4 (October - December) 2014 (Feb 2015)
- [11] Wang, K., Shen, Z.: A gpu based trafficparallel simulation module of artificial transportation systems. In: Service Operations and Logistics, and Informatics (SOLI), 2012 IEEE International Conference on. pp. 160–165. IEEE (2012)