
Accelerating Road Network Simulations using GPUs

Peter Heywood

The University of Sheffield

Table of contents

1. Road Network Simulation

2. GPU Accelerated Microscopic Simulation

3. GPU Accelerated Macroscopic Simulation

4. Summary

1

Road Network Simulation

Road Network Simulation

• Global transport demand is increasing [4]
• Many constraints on transport networks
• Simulation can improve use of limited resources

• Planning
• Management

cb CC BY 2.0 Highways England
https://www.flickr.com/photos/highwaysagency/9950013283/

2

http://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/highwaysagency/9950013283/

Road Network Simulation

• Simulations are becoming more computationally
expensive

• Larger - City-scale, National-scale
• More Complex - CAVs, Smart Motorways, ...
• More Permutations - weather, demand, ...

• Better than real-time simulations required for
active management

• Performance is limiting the use of simulation [1]
• Need higher performance simulators!

3

Road Network Simulation Categories

• Macroscopic Simulation
• Top-Down
• High level, flow simulation

• Mesoscopic Simulation
• Mid-level
• Fine-grained macrosimulation or Platoons/groups

• Microscopic Simulation
• Bottom-Up
• Low level, individual vehicles

Top-Down

Bottom-Up

4

Graphics Processing Units (GPUs)

• Massively parallel, many-core co-processors
• Data-parallel algorithms and data structure

• Possibly very different to CPU
• Suitable for all scales of road network simulation

• Different degrees of parallelism expressed
• Different levels of performance improvement

NVIDIA DGX-2

5

GPU Accelerated Microscopic Simulation

Microscopic Simulation

• Bottom-up Simulations
• Individual vehicles
• Agent Based Modelling (ABM) [6]

• Intuitive descriptions of behaviour and interactions
• with other vehicles
• with the environment

• Complex behaviour emerges from simple rules

• Very computationally expensive
• Large volume of data required and generated

FLAME GPU Road Network Microscopic
Simulation

6

Our Aims

Aims

• Demonstrate GPUs are suitable and performant
• Implement a subset of models from commercial tool
• Cross-validate GPU implementation
• Benchmark using a scalable model

• Aimsun [2]
• Commercial, multi-core CPU, microscopic simulator
• Used globally within the transport industry
• Can simulate a broad array of transport networks and

infrastructure

7

Procedurally Generated Network

• Manhattan-style grid network
• Single lane, one-way roads
• Stop-signs at junctions
• Entrances and Exits at the edge

of the simulated grid

Junction

Road Section

Turning Section

8

Aimsun 8.1 CPU Performance

• Single size of grid network
• 3 repetitions
• Diminishing Returns from

additional cores

0 2 4 6 8 10

Number of Threads

0

100

200

300

400

500

600

700

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Total Simulation Time Against Number of CPU Cores

Dual Intel Xeon E5-2643 v4

Intel Core i7 4770k

9

Models and Functionality

• Gipps’ Car Following Model [9, 14]
• Aimsun Gap Acceptance Model [2]
• Turning Probability based Routing [13]

• Simulated Vehicle Detectors [13]
• Constant Vehicle Arrival [13]

Gipps’ Car Following Model

vfree(n, t + τ) ≤ v(n, t) + 2.5a(n)τ(1 − v(n, t)/V(n))(0.025 + v(n, t)/Vt(n)
1
2

vsafe(n, t + τ) ≤ d(n)τ +

√

d(n)2τ 2 − d(n)(2[x(n−1, t) − s(n−1) − x(n, t)] − v(n, t)τ −
v(n−1, t)2

d̂(n)
)

v(n, t + τ) = min

{

vfree(n, t + τ), vsafe(n, t + τ)

}

10

FLAME GPU

• Flexible Large-scale Agent Modelling Environment for the GPU [11]
• Template-based simulation environment for high performance simulation
• Agents represented as X-Machines

• with message lists for communication
• Abstracts the CUDA programming model away from the user

• I.e. A modeller writes an XML file and simple C/C++ code

flamegpu.com

github.com/flamegpu

11

FLAME GPU

• State-based representation minimises divergence
• SoA per state list - improves data access pattern
• Message lists avoid race-conditions

• Natural synchronisation barriers

• Reduce global reads via shared memory

12

FLAME GPU Road Network Simulation State Diagram

13

FLAME GPU Communication

• Message lists enable high performance memory access pattern
• avoids issues with concurrent access to agent memory

• Typically the performance-limiting factor in large-scale simulations
• Specialisation for typical communication patterns [12]

• All-to-All
• Discrete Partitioned Messaging (2D Cellular Automata)
• Spatially Partitioned Messaging (2D & 3D Continuous Agents)

• Non-optimal for road network models

14

On-Graph Communication

• Communication between vehicles is based
on the transport network

• I.e. Gipps’ car following model only
involves the lead vehicle

• Associate messages to the graph data
structure

• Reduce the number of messages to be
iterated

• by accessing messages from the relevant
edge(s) or vertices

Communication Messages
All-to-All 42
Spatial 18
Graph 5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Example highlighting FLAME GPU Communication strategies 15

On-Graph Communication

• Compressed Sparse Row (CSR) representation of graph
• Messages contain edge or vertex index
• Sort message list based on edge (or vertex) index

• Counting Sort
• Shared-memory atomics
• Builds data structure to access messages whilst sorting

• Can access a single edge, or use the CSR to explore the message-list
• Available in the next release of FLAME GPU (1.5)

16

On-Graph Communication Performance

• Measured performance of message list output and input for car-following
• Higher output cost, much cheaper message input cost.

0 20000 40000 60000 80000 100000 120000 140000

Maximum No. Agents

0.1

0.2

0.3

0.4

0.5

A
ve
ra
ge

T
im
e
(m

s)

Average Execution Time for Message Output (Car Following Model)

Graph-Based

Spatial Partitioning

All-to-All

0 20000 40000 60000 80000 100000 120000 140000

Maximum No. Agents

0

20

40

60

80

100

120

A
ve
ra
ge

T
im
e
(m

s)

Average Execution Time for Message Iteration (Car Following Model)

Graph-Based

Spatial Partitioning

All-to-All

17

Performance Benchmarking

1. Scale population and environment
2. Scale population for fixed size environment

• 3 repetitions
• 1 hour of simulated time
• Multiple hardware configurations

Workstation

• Windows and Linux
• i7 4770k (4 Cores)
• GTX 1080
• Titan X (Pascal)
• Titan V

Nvidia DGX-1

• Linux
• 2x Xeon E5 2698 v4 (20 cores each)
• 8x Tesla P100

18

Scale Population and Environment

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k • 0.5 Million Vehicles:

• CPU - Windows
• 5447s

• GPU - Windows
• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux
• 82.04s
• 66x speed up

(Titan V)

19

Scale Population and Environment

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k

GeForce GTX 1080 (WDDM)

TITAN X (Pascal) (TCC)

• 0.5 Million Vehicles:

• CPU - Windows
• 5447s

• GPU - Windows
• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux
• 82.04s
• 66x speed up

(Titan V)

19

Scale Population and Environment

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k

GeForce GTX 1080 (WDDM)

TITAN X (Pascal) (TCC)

Tesla P100 (Linux)

Titan V (Linux)

• 0.5 Million Vehicles:

• CPU - Windows
• 5447s

• GPU - Windows
• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux
• 82.04s
• 66x speed up

(Titan V)

19

Scale Population for Fixed Environment

20000 40000 60000 80000 100000 120000

Total Vehicle Demand

10
1

10
2

A
ve
ra
ge

T
ot
al
S
im
ul
at
io
n
T
im
e
(s
)

Average Simulation Time as Flow is Increased Grid Size 64

Aimsun 8.1 - i7 4770k

FLAME GPU - GeForce GTX 1080

FLAME GPU - TITAN X (Pascal)

50000 100000 150000 200000 250000

Total Vehicle Demand

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al
S
im
ul
at
io
n
T
im
e
(s
)

Average Simulation Time as Flow is Increased Grid Size 128

Aimsun 8.1 - i7 4770k

FLAME GPU - GeForce GTX 1080

FLAME GPU - TITAN X (Pascal)

20

GPU Accelerated Macroscopic Simulation

Macroscopic Simulation

• Top-Down Simulations
• Models networks as flows on roads (i.e pipes)
• High level of abstraction from reality
• Relatively long time steps

• Misses short-term events

• Low data requirements
• Lower computational cost

• But still expensive for large scale simulations

cbaBy Tamserpo - Own work, CC BY-SA 3.0
https://commons.wikimedia.org/w/index.php?curid=9957456 21

https://commons.wikimedia.org/w/index.php?curid=9957456

SATURN

• Simulation and Assignment of Traffic to Urban Road Networks [16]
• Commercial, multi-core CPU software
• Originally Developed in the 1970s
• Used by companies and governments for (mostly) planning

• Highways England, Transport for London (TfL), ...

• Fortran 77 with OpenMP

22

SATURN Simulation-Assignment Loop

• Iterative equilibrium-based algorithm of Assignment
and Simulation

• Wardrop’s Equilibrium [17]
• Assignment Phase

• Network + Demand Matrix -> Flow-per-edge
• Vehicles types are considered independently (User

Classes)
• Cars, Taxis, Buses, HGVs, ...

• Trip Matrix contains many Origins and
Destinations

• Known as Zones or Centroids

Assignment-Simulation Loop in SATURN [16]

23

SATURN Models

• Road networks are very sparse graphs
• Preprocessing step to create a denser representation
• Referred to as “Spider Network”

• Contraction Hierarchies

• These are very sparse graphs, even when preprocessed
• Range of scales from tiny to very very large

Model Size User Classes Centroids Vertices Edges
E Town 2 12 17 74
D Small City 13 547 2700 25385
C Large City 5 2548 15179 132600
L Metropolitan 5 5194 18427 192711

24

CPU Performance - Serial and OpenMP

Single Core CPU Multi-Core CPU

25

CPU OpenMP Scaling

Single Core CPU Multi-Core CPU

• i7 6850k
• 6 cores
• 12 threads
• 3 Repetitions
• Diminishing

Returns

26

SATURN Profiling - Serial

• Serial version of SATALL
• Largest available model (L)

• London + surrounding area

• > 11 Hour Runtime
• 97.4% in a single subroutine
• Computes shortest paths for an origin centroid

• Accumulates flow for each trip from the origin

• Most time spent calculating paths

27

CPU Algorithm

• Single Source Shortest Path (SSSP)
• Uses the D’Esopo-Pape algorithm [10]

• An efficient, highly-serial algorithm
• Algorithmic decision in the 1970s, due to benchmarking at the time [15]
• A modern implementation of Dijkstra’s algorithm [5, 8] is up to 50% faster

• Flow Accumulation
• Trace all routes from an origin to destination zones
• Update per-edge flow value at each step
• Double precision to avoid numerical precision loss

• Calculated per-origin centroid, per-userclass, at each iteration

28

GPU Shortest Path Algorithm

• Need data-parallel algorithms for the GPU
• Sacrifice efficiency to enable parallelism
• More work, but in parallel

Bellman-Ford Algorithm [3, 7]

• For up to |v| − 1 iterations
• For each Edge in the network
• If the edge is a cheaper route to the destination node, update the route.

• Significant changes required to provide a performance improvement for road networks vs
Dijkstra or D’Esopo-Pape

29

Initial GPU Implementation

• Naive version of the Bellman-Ford Algorithm
• Much, Much, Much, Much Slower...
• 364x slower
• Inefficient use of compute
• Inefficient data transfer
• Lots of unnecessary work

30

Multiple Source Bellman-Ford

• Frontier-based implementation of Bellman-Ford
• Solve for multiple origins concurrently
• Threads co-operate to balance work-load
• Solve for multiple independent user-classes

concurrently

a

b

c

d

e h

f

g

i

1

2

3

1 1

2

3

1

2

3

Iteration Frontier Vertices
0 a
1 b c d
2 e f g
3 h i
4 i
5

31

Origin-Vertex Frontier

Vertex Frontier

• Tracks which vertices could cause an update
• Increases efficiency, but decreases parallelism

• Not enough work
• Latency bound, Low number of threads

(< 2500 for network L)

Origin-Vertex Frontier

• Multiple origins concurrently

• Track which origin each fronter vertex belongs to
• Increases parallelism
• Significantly increases memory requirements

32

Block-level Load Balancing

• Number of edges per vertex varies
• Co-operative Thread Array (CTA)
• Threads in a block collectively work on the same

portion of the origin-vertex frontier
• Balances work load across threads (and warps) in

the block
• Improved L2 bandwidth 4.8x (148GB/s to

716GB/s)
• CUDA 9.0 introduces Cooperative Groups API

33

Flow Accumulation

• For each trip from origin to destination:
• Trace the shortest path, atomically updating per-link flow

• Good performance on Pascal and Volta
• But atomicAdd(double) not available on Maxwell and older

• atomicCAS implementation very slow due to high atomic contention
• Complex workaround:

• Device-wide sort
• Block-wide key-value reduction
• Single global atomicAdd per edge in the block

• Faster the naive algorithm on Maxwell, but slower than Pascal

34

Multiple User Classes

• User classes can processed independently
• CUDA stream per user-class
• Increases parallelism
• Not a significant speed up

• Serialisation when device oversubscribed

• Enables the use of Multiple GPUs

35

Multiple GPUs

• Distribute user classes between GPUs
• Imbalanced workload between devices

• Only assign whole user classes

36

Volta GPU Architecture

• Up to 80% performance
improvement vs 1 Titan Xp

• Speed up relative to 6 core i7
• No source code changes

• Other than updating libraries
(CUB) and CUDA version.

37

Summary

Conclusion

• Microscopic Simulation
• Up to 66x speed up using a Titan V
• Real-time-ratio of 39x for up to 576000 vehicles

• Macroscopic Assignment
• Up to 11.7x speed up on 1 Titan V vs 6 core i7
• Up to 11.8x speed up on 5 P100 vs 2 CPUs

• More simulations in less time
• Large simulations feasible
• Better-than-real-time microsimulation of 0.5 million

vehicles is achievable

38

Thank You

Supported By
• DfT Transport Technology Research Innovation Grant

(T-TRIG July 2016)

• EPSRC fellowship “Accelerating Scientific Discovery with
Accelerated Computing” (EP/N018869/1)

• Support from Atkins, STFC, TSC & Aimsun

Contact
• p.heywood@sheffield.ac.uk
• @ptheywood
• ptheywood.uk
• rse.shef.ac.uk

More Information
“Data-parallel agent-based microscopic road network simulation using graphics processing
units”

https://doi.org/10.1016/j.simpat.2017.11.002

39

References i

[1] C. Antoniou, J. Barcelò, M. Brackstone, H. Celikoglu, B. Ciuffo, V. Punzo, P. Sykes, T. Toledo, P. Vortisch, and
P. Wagner.
Traffic simulation: Case for guidelines.
2014.

[2] J. Barceló and J. Casas.
Dynamic network simulation with aimsun.
In Simulation approaches in transportation analysis, pages 57–98. Springer, 2005.

[3] R. Bellman.
On a routing problem.
Quarterly of applied mathematics, pages 87–90, 1958.

[4] Department for Transport.
Road traffic forecasts 2015.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/260700/
road-transport-forecasts-2013-extended-version.pdf, Mar. 2015.

[5] E. W. Dijkstra.
A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

References ii

[6] G. Eliasson.
Modeling the experimentally organized economy, 1991.

[7] L. R. Ford Jr.
Network flow theory.
Technical report, DTIC Document, 1956.

[8] M. L. Fredman and R. E. Tarjan.
Fibonacci heaps and their uses in improved network optimization algorithms.
Journal of the ACM (JACM), 34(3):596–615, 1987.

[9] P. Gipps.
A behavioural car-following model for computer simulation.
Transportation Research Part B: Methodological, 15(2):105–111, 1981.

[10] U. Pape.
Implementation and efficiency of Moore-algorithms for the shortest route problem.
Mathematical Programming, 7(1):212–222, 1974.

[11] P. Richmond.
Flame gpu technical report and user guide (cs-11-03).
Technical report, Technical report, Department of Computer Science, University of Sheffield, 2011.

References iii

[12] P. Richmond and D. Romano.
Template-driven agent-based modeling and simulation with cuda.
GPU Computing Gems Emerald Edition, Applications of GPU Computing Series, pages 313–324, 2011.

[13] Transport Simulation Systems.
Aimsun 8 Dynamic Simulators Users’ Manual, 2014.

[14] M. Treiber, A. Hennecke, and D. Helbing.
Congested traffic states in empirical observations and microscopic simulations.
Physical review E, 62(2):1805, 2000.

[15] D. Van Vliet.
Improved shortest path algorithms for transport networks.
Transportation Research, 12(1):7–20, 1978.

[16] D. Van Vliet.
SATURN - a modern assignment model.
Traffic Engineering & Control, 23(HS-034 256), 1982.

[17] J. G. Wardrop.
Some theoretical aspects of road traffic research.
Proceedings of the institution of civil engineers, 1(3):325–362, 1952.

Backup Slides

Backup Slides

Microsimulation: Runtime per Iteration

0 1000 2000 3000 4000

Iteration

0

100

200

300

400

500

600

A
ve
ra
ge

S
im

u
la
ti
on

S
te
p
T
im

e
(m

s)
Average Simulation Step Time for a 1 Hour Simulation for a 256x256 Grid

Aimsun 8.1 - i7 4770k

FLAME GPU - TITAN X (Pascal)

• Population grows as
time progresses

• Anomalous values
correlate with
detector outputs

• Every 800 iterations
(10 minutes)

About Me

• MComp Computer Science & Artificial Intelligence at Sheffield (2010-2014)
• PhD Student at Sheffield (2014 - 2018)
• Research Software Engineer (RSE) and PhD Candidate at Sheffield (2018-2021)

	Road Network Simulation
	GPU Accelerated Microscopic Simulation
	GPU Accelerated Macroscopic Simulation
	Summary
	Appendix

