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Road Network Simulation



Road Network Simulation

• Global transport demand is increasing [4]
• Many constraints on transport networks
• Simulation can improve use of limited resources

• Planning
• Management

cb CC BY 2.0 Highways England
https://www.flickr.com/photos/highwaysagency/9950013283/
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Road Network Simulation

• Simulations are becoming more computationally
expensive

• Larger - City-scale, National-scale
• More Complex - CAVs, Smart Motorways, ...
• More Permutations - weather, demand, ...

• Better than real-time simulations required for
active management

• Performance is limiting the use of simulation [1]
• Need higher performance simulators!
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Road Network Simulation Categories

• Macroscopic Simulation
• Top-Down
• High level, flow simulation

• Mesoscopic Simulation
• Mid-level
• Fine-grained macrosimulation or Platoons/groups

• Microscopic Simulation
• Bottom-Up
• Low level, individual vehicles

Top-Down

Bottom-Up
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Graphics Processing Units (GPUs)

• Massively parallel, many-core co-processors
• Data-parallel algorithms and data structure

• Possibly very different to CPU
• Suitable for all scales of road network simulation

• Different degrees of parallelism expressed
• Different levels of performance improvement

NVIDIA DGX-2
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GPU Accelerated Microscopic Simulation



Microscopic Simulation

• Bottom-up Simulations
• Individual vehicles
• Agent Based Modelling (ABM) [6]

• Intuitive descriptions of behaviour and interactions
• with other vehicles
• with the environment

• Complex behaviour emerges from simple rules

• Very computationally expensive
• Large volume of data required and generated

FLAME GPU Road Network Microscopic
Simulation
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Our Aims

Aims

• Demonstrate GPUs are suitable and performant
• Implement a subset of models from commercial tool
• Cross-validate GPU implementation
• Benchmark using a scalable model

• Aimsun [2]
• Commercial, multi-core CPU, microscopic simulator
• Used globally within the transport industry
• Can simulate a broad array of transport networks and

infrastructure
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Procedurally Generated Network

• Manhattan-style grid network
• Single lane, one-way roads
• Stop-signs at junctions
• Entrances and Exits at the edge

of the simulated grid

Junction

Road Section

Turning Section
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Aimsun 8.1 CPU Performance

• Single size of grid network
• 3 repetitions
• Diminishing Returns from

additional cores
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Models and Functionality

• Gipps’ Car Following Model [9, 14]
• Aimsun Gap Acceptance Model [2]
• Turning Probability based Routing [13]

• Simulated Vehicle Detectors [13]
• Constant Vehicle Arrival [13]

Gipps’ Car Following Model

vfree(n, t + τ) ≤ v(n, t) + 2.5a(n)τ(1 − v(n, t)/V(n))(0.025 + v(n, t)/Vt(n)
1
2

vsafe(n, t + τ) ≤ d(n)τ +

√

d(n)2τ 2 − d(n)(2[x(n−1, t) − s(n−1) − x(n, t)] − v(n, t)τ −
v(n−1, t)2

d̂(n)
)

v(n, t + τ) = min

{

vfree(n, t + τ), vsafe(n, t + τ)

}
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FLAME GPU

• Flexible Large-scale Agent Modelling Environment for the GPU [11]
• Template-based simulation environment for high performance simulation
• Agents represented as X-Machines

• with message lists for communication
• Abstracts the CUDA programming model away from the user

• I.e. A modeller writes an XML file and simple C/C++ code

flamegpu.com

github.com/flamegpu
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FLAME GPU

• State-based representation minimises divergence
• SoA per state list - improves data access pattern
• Message lists avoid race-conditions

• Natural synchronisation barriers

• Reduce global reads via shared memory
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FLAME GPU Road Network Simulation State Diagram
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FLAME GPU Communication

• Message lists enable high performance memory access pattern
• avoids issues with concurrent access to agent memory

• Typically the performance-limiting factor in large-scale simulations
• Specialisation for typical communication patterns [12]

• All-to-All
• Discrete Partitioned Messaging (2D Cellular Automata)
• Spatially Partitioned Messaging (2D & 3D Continuous Agents)

• Non-optimal for road network models
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On-Graph Communication

• Communication between vehicles is based
on the transport network

• I.e. Gipps’ car following model only
involves the lead vehicle

• Associate messages to the graph data
structure

• Reduce the number of messages to be
iterated

• by accessing messages from the relevant
edge(s) or vertices

Communication Messages
All-to-All 42
Spatial 18
Graph 5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Example highlighting FLAME GPU Communication strategies 15



On-Graph Communication

• Compressed Sparse Row (CSR) representation of graph
• Messages contain edge or vertex index
• Sort message list based on edge (or vertex) index

• Counting Sort
• Shared-memory atomics
• Builds data structure to access messages whilst sorting

• Can access a single edge, or use the CSR to explore the message-list
• Available in the next release of FLAME GPU (1.5)
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On-Graph Communication Performance

• Measured performance of message list output and input for car-following
• Higher output cost, much cheaper message input cost.
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Performance Benchmarking

1. Scale population and environment
2. Scale population for fixed size environment

• 3 repetitions
• 1 hour of simulated time
• Multiple hardware configurations

Workstation

• Windows and Linux
• i7 4770k (4 Cores)
• GTX 1080
• Titan X (Pascal)
• Titan V

Nvidia DGX-1

• Linux
• 2x Xeon E5 2698 v4 (20 cores each)
• 8x Tesla P100
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Scale Population and Environment
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Scale Population for Fixed Environment
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GPU Accelerated Macroscopic Simulation



Macroscopic Simulation

• Top-Down Simulations
• Models networks as flows on roads (i.e pipes)
• High level of abstraction from reality
• Relatively long time steps

• Misses short-term events

• Low data requirements
• Lower computational cost

• But still expensive for large scale simulations

cbaBy Tamserpo - Own work, CC BY-SA 3.0
https://commons.wikimedia.org/w/index.php?curid=9957456 21
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SATURN

• Simulation and Assignment of Traffic to Urban Road Networks [16]
• Commercial, multi-core CPU software
• Originally Developed in the 1970s
• Used by companies and governments for (mostly) planning

• Highways England, Transport for London (TfL), ...

• Fortran 77 with OpenMP
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SATURN Simulation-Assignment Loop

• Iterative equilibrium-based algorithm of Assignment
and Simulation

• Wardrop’s Equilibrium [17]
• Assignment Phase

• Network + Demand Matrix -> Flow-per-edge
• Vehicles types are considered independently (User

Classes)
• Cars, Taxis, Buses, HGVs, ...

• Trip Matrix contains many Origins and
Destinations

• Known as Zones or Centroids

Assignment-Simulation Loop in SATURN [16]

23



SATURN Models

• Road networks are very sparse graphs
• Preprocessing step to create a denser representation
• Referred to as “Spider Network”

• Contraction Hierarchies

• These are very sparse graphs, even when preprocessed
• Range of scales from tiny to very very large

Model Size User Classes Centroids Vertices Edges
E Town 2 12 17 74
D Small City 13 547 2700 25385
C Large City 5 2548 15179 132600
L Metropolitan 5 5194 18427 192711
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CPU Performance - Serial and OpenMP

Single Core CPU Multi-Core CPU
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CPU OpenMP Scaling

Single Core CPU Multi-Core CPU

• i7 6850k
• 6 cores
• 12 threads
• 3 Repetitions
• Diminishing

Returns
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SATURN Profiling - Serial

• Serial version of SATALL
• Largest available model (L)

• London + surrounding area

• > 11 Hour Runtime
• 97.4% in a single subroutine
• Computes shortest paths for an origin centroid

• Accumulates flow for each trip from the origin

• Most time spent calculating paths

27



CPU Algorithm

• Single Source Shortest Path (SSSP)
• Uses the D’Esopo-Pape algorithm [10]

• An efficient, highly-serial algorithm
• Algorithmic decision in the 1970s, due to benchmarking at the time [15]
• A modern implementation of Dijkstra’s algorithm [5, 8] is up to 50% faster

• Flow Accumulation
• Trace all routes from an origin to destination zones
• Update per-edge flow value at each step
• Double precision to avoid numerical precision loss

• Calculated per-origin centroid, per-userclass, at each iteration
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GPU Shortest Path Algorithm

• Need data-parallel algorithms for the GPU
• Sacrifice efficiency to enable parallelism
• More work, but in parallel

Bellman-Ford Algorithm [3, 7]

• For up to |v| − 1 iterations
• For each Edge in the network
• If the edge is a cheaper route to the destination node, update the route.

• Significant changes required to provide a performance improvement for road networks vs
Dijkstra or D’Esopo-Pape
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Initial GPU Implementation

• Naive version of the Bellman-Ford Algorithm
• Much, Much, Much, Much Slower...
• 364x slower
• Inefficient use of compute
• Inefficient data transfer
• Lots of unnecessary work
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Multiple Source Bellman-Ford

• Frontier-based implementation of Bellman-Ford
• Solve for multiple origins concurrently
• Threads co-operate to balance work-load
• Solve for multiple independent user-classes

concurrently
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Origin-Vertex Frontier

Vertex Frontier

• Tracks which vertices could cause an update
• Increases efficiency, but decreases parallelism

• Not enough work
• Latency bound, Low number of threads

(< 2500 for network L)

Origin-Vertex Frontier

• Multiple origins concurrently

• Track which origin each fronter vertex belongs to
• Increases parallelism
• Significantly increases memory requirements
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Block-level Load Balancing

• Number of edges per vertex varies
• Co-operative Thread Array (CTA)
• Threads in a block collectively work on the same

portion of the origin-vertex frontier
• Balances work load across threads (and warps) in

the block
• Improved L2 bandwidth 4.8x (148GB/s to

716GB/s)
• CUDA 9.0 introduces Cooperative Groups API
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Flow Accumulation

• For each trip from origin to destination:
• Trace the shortest path, atomically updating per-link flow

• Good performance on Pascal and Volta
• But atomicAdd(double) not available on Maxwell and older

• atomicCAS implementation very slow due to high atomic contention
• Complex workaround:

• Device-wide sort
• Block-wide key-value reduction
• Single global atomicAdd per edge in the block

• Faster the naive algorithm on Maxwell, but slower than Pascal
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Multiple User Classes

• User classes can processed independently
• CUDA stream per user-class
• Increases parallelism
• Not a significant speed up

• Serialisation when device oversubscribed

• Enables the use of Multiple GPUs
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Multiple GPUs

• Distribute user classes between GPUs
• Imbalanced workload between devices

• Only assign whole user classes
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Volta GPU Architecture

• Up to 80% performance
improvement vs 1 Titan Xp

• Speed up relative to 6 core i7
• No source code changes

• Other than updating libraries
(CUB) and CUDA version.
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Summary



Conclusion

• Microscopic Simulation
• Up to 66x speed up using a Titan V
• Real-time-ratio of 39x for up to 576000 vehicles

• Macroscopic Assignment
• Up to 11.7x speed up on 1 Titan V vs 6 core i7
• Up to 11.8x speed up on 5 P100 vs 2 CPUs

• More simulations in less time
• Large simulations feasible
• Better-than-real-time microsimulation of 0.5 million

vehicles is achievable
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Microsimulation: Runtime per Iteration
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