

Improving Transport Simulation Performance using Graphics Processing Units

Peter Heywood, Paul Richmond The University of Sheffield

Transport Network Simulations

- Global transport demand is increasing
- Many constraints on transport networks
- Simulations can improve the use of limited resources
 - Planning
 - Management

<u>CC BY 2.0</u> Highways England https://www.flickr.com/photos/highwaysagency/9950013283/

Transport Network Simulations

- Simulations are becoming more computationally expensive
 - Larger
 - City-scale, National-scale
 - More Complex
 - CAVs, Smarter Infrastructure
 - Multi-Mode
 - More Permutations
 - Weather, Demand, etc.
- Performance is limiting the use of simulation
- Faster simulators are required
 - Better-than-real-time

Central Processing Units (CPUs)

- Existing simulators use Central Processing Units (CPUs)
 - Aimsun, PTV simulators, SATURN, SUMO, ...
- General Purpose Processors
- Generational improvements have slowed
 - Individual cores not getting much faster
 - CPUs are becoming more parallel
- Very complex processing cores
- Multi-Core Processors
 - $\circ~$ 10s of physical cores

Graphics Processing Units (GPUs)

- Originally developed for 2D and 3D computer graphics
 - Suitable for general purpose computing
- Many-Core Co-Processor
 - Massively Parallel
 - $\circ~$ Thousands of processing cores
 - Processor cores are relatively simple
 - Connected over PCI-E bus
 - Power Efficient

2x Nvidia Titan Xp and 2x Titan V GPUs

Theoretical Peak Performance (and Power)

Serial Computing ~53 GigaFLOPS 1 Core

Parallel Computing ~1.5 TeraFLOPS

28 Cores

Accelerated Computing 7.8 TeraFLOPS 5120 Cores

- Theoretical Peak Performance
- Double-Precision
- Skylake 28 Core CPU

 1.5 TFLOPS

。165 W

- \circ 9 GFLOPS/Watt
- GPU
 - 7.8 FLOPS
 - 。250 W
 - 31 GFLOPS/Watt
- GPUs even better at lower precision

Top 500 Supercomputers

- Fastest computers in the world
- 1 Titan V
 - 250W, 1kg, 26cm long
- Faster than No.1 in 2001
 - ASCI White
 - 6MW, 106 Tons, 200 Cabinates
 - 200 Cabinets
- 8 Titan Vs
 - Would have been 8th most powerful computer in 2007

Challanges of GPUs

- Switching from CPU to GPU is not a straight-forward
- Considerable changes to software
 - New Algorithms
 - New Data Structures
 - Data Locality and Data Transfer
- High level of parallelism required
 - If a problem is not parallel enough it **will not be faster**
- Specialist knowledge required to achieve high performance

GPU Accelerated Transport Simulations

1. Macroscopic Road Network Simulation and Assignment

- 2. Microscopic Road Network Simulation
- 3. Pedestrian Crowd Simulation
- 4. Multi-Modal Rail Network Simulation

GPU Accelerated Macroscopic Simulation

- SATURN Simulation and Assignment of Traffic to Urban Road Networks
- Macroscopic Assignment and Simulation
 - High level of abstraction
 - Relatively low computational requirements
- Large networks can take many hours per run
 - $\circ~$ even using 32 CPU Cores

SATURN

- Iterative Equilibrium-based algorithm of Assignment and Simulation
- Used for Highways England Regional Transport Models (RTMs)
- Individual simulations can take many hours
- Profiling shows majority of work in Assignment Phase
 - Mostly calculating Shortest Paths

Network	Size	User Classes	Zones
Е	Town	2	12
D	Small City	13	547
С	Large City	5	2548
L	Metropolitan	5	5194

SATURN Assignment-Simulation Loop

SATURN Profiling

CPU Performance

Total Time - Serial SATALL

Total Time - Multicore SATALL

Significant Algorithmic Changes - Shortest Paths

CPU

- Single Source Shortest Path (SSSP)
- Use the D'Esopo-Pape algorithm
 Or Dijkstra's algorithm
- Very Efficient algorithms
- But Highly Sequential
 - Not Suitable for GPU

GPU

- Use the Bellman-Ford algorithm
- Highly Parallel
- But Very inefficient
 - Naive Implementation 360x slower
- Many optimisations for efficient GPU Algorithm
 vertex Frontier
 - Multiple Concurrent Sources
 - Multiple Concurrent User Classes
 - Cooperative Groups
 - etc.

Single GPU Performance vs Single CPU

- i7-6850k
 - 6 core CPU
 - 12 Threads
 - 4395.49 seconds (Assignment)
- Nvidia Titan V GPU
 - 5120 CUDA Cores
 - \circ 12 GB HBM2
 - CUDA 9.0
 - 419.21 seconds (Assignment)
 - Up to 10.5 speed-up

Multi-GPU Performance vs Multi CPU

- LoHAM model
- Dual Socket Xeon E5-2667
 - $_{\circ}~$ 12 Cores, 24 Threads
 - 2633.25 seconds (Assignment)
- Nvidia Tesla P100
 - 5 User-classes of vehicle
 - 225.83 seconds (Assignment)
 - Up to **11.7x** speed-up

GPU Accelerated Microscopic Simulation

- Proof of concept GPU accelerated Microsimulation
 - Funded by Department for Transport T-TRIG grant
 - Worked in collaboration with Aimsun
- 1. Implement subset of models for GPUs from existing simulator
- 2. Cross-validate each model and overall behaviour
- 3. Benchmark Performance using a scalable network

Artificial Network and CPU Performance

Aimsun 8.1 CPU Scaling

Implementation Details

- Implemented a subset of Aimsun 8.1 models
 - Gipps's Car Following Model
 - Gap Acceptance Model
 - Constant Vehicle Arrival
 - etc.
- Cross-validated
 - Individual Features
 - Overall network behaviour

- Implemented using FLAME GPU
- Template-based simulation environment for high performance simulation
- Agent Based Modelling
- No GPU knowledge required

flamegpu.com

Scaling Population and Environment

Average Execution Time for a 1 Hour Simulation

- 500,000 vehicles
- 60 minutes
- CPU i7-4770k
 - Windows
 - **5447s**

Scaling Population and Environment

Average Execution Time for a 1 Hour Simulation

- 500,000 vehicles
- 60 minutes
- CPU i7-4770k
 Windows

∘ 5447s

- GPU Titan X (Pascal)
 - Windows TCC
 - **174.2s**
 - 31x Speed Up

Scaling Population and Environment

Average Execution Time for a 1 Hour Simulation

- 500,000 vehicles
- 60 minutes
- CPU i7-4770k
 Windows

∘ 5447s

- GPU Titan X (Pascal)
 - Windows TCC
 - 174.2s
 - 31x Speed Up
- GPU Titan V
 - Linux
 - **82.04s**
 - 66x Speed up

GPU Pedestrian Simulation

- GPUs suitable for many modes of transport
- I.e. Pedestrian Simulation
- Using FLAME GPU
- Can simulate 100,000s of pedestrians

Multi-Modal Simulation

- Collaboration with Siemens
- Multi-modal Smart-City Simulation
 - CPU based rail simulation
 - GPU accelerated pedestrian simulation
 - CPU based road network simulation (SUMO)
- Evaluate rail network performance including pedestrian behaviours in station
- More information: youtube.com/watch?v=Rz_XzbZIMes

Conclusion

- Up to **11.7x** macroscopic simulation speedup
- Up to **66x** microscopic simulation speedup
 - **39x** faster than real-time for over 550,000 vehicles
- High performance pedestrian simulations
- Enables:
 - More simulations in less time
 - Larger-scale simulations
 - Better than real time microsimulation
 - City-scale/national-scale multi-modal simulations

Thank You

Contact

- Peter Heywood
 - o p.heywood@sheffield.ac.uk
 - ptheywood.uk
- Paul Richmond
 - p.richmond@sheffield.ac.uk
 - paulrichmond.shef.ac.uk
- RSE Sheffield
 - http://rse.shef.ac.uk/

Supported by

- EPSRC fellowship "Accelerating Scientific Discovery with Accelerated Computing" (EP/N018869/1)
- Atkins, STFC, TSC & Aimsun
- DfT Transport Technology Research Innovation Grant (T-TRIG July 2016)
- Siemens

More Information

• "Data-parallel agent-based microscopic road network simulation using graphics processing units"

Heywood et al. 2017

doi.org/10.1016/j.simpat.2017.11.002

Additional Slides

Models implemented and validated

Behaviours

- Gipps' Car Following Model
- Gap Acceptance Model
- Constant Vehicle Arrival

Validation

- Turning Probabilities Overall network behaviour over multiple runs
- Vehicle Detectors
- Stop Signs

FLAME GPU

- Template-based simulation environment for high performance simulation
- Agent Based Modelling
 - Define individual behaviours with local interactions
 - Complex behaviours emerge
- No GPU knowledge required
- Extended with transport network specific algorithms
- flamegpu.com

Velocity against Simulation Iteration for the Vehicle 1

