
Accelerating Road Network Simulations using GPUs

Peter Heywood

The University of Sheffield

About Me

• MComp Computer Science & Artificial Intelligence at Sheffield (2010-2014)
• PhD Student at Sheffield (2014 - 2018)
• Research Software Engineer (RSE) and PhD Candidate at Sheffield (2018-2021)

1

Table of contents

1. Road Network Simulation

2. GPU Accelerated Macroscopic Simulation

3. GPU Accelerated Microscopic Simulation

4. Summary

2

Road Network Simulation

Road Network Simulation

• Global transport demand is increasing
• Many constraints on transport networks
• Simulation can improve use of limited resources

• Planning
• Management

cb CC BY 2.0 Highways England
https://www.flickr.com/photos/highwaysagency/9950013283/

3

http://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/highwaysagency/9950013283/

Road Network Simulation

• Simulations are becoming more computationally
expensive

• Larger - City-scale, National-scale
• More Complex - CAVs, Smart Motorways, ...
• More Permutations

• Better-than Real-time simulations required for
active management

• Need more compute!

4

Simulation Categories

• Macroscopic Simulation (and Assignment)
• Top-Down
• High level, flow simulation

• Mesoscopic Simulation
• Middle-out
• Fine-grained Macrosimulation or Platoons/groups

• Microscopic Simulation
• Bottom-Up
• Low level, individual vehicles

Top-Down

Bottom-Up

5

Graphics Processing Units (GPUs)

• Massively Parallel co-processors
• Data-parallel algorithms and data structure
• Suitable for all scales of road network simulation

• Different degrees of parallelism expressed
• Different levels of performance improvement

NVIDIA DGX-2

6

GPU Accelerated Macroscopic Simulation

Macroscopic Simulation

• Top-Down Simulations
• Models networks as flows on roads (i.e pipes)
• High level of abstraction
• Relatively long time steps

• Misses short-term events

• Low data requirements
• Lower computational cost

cbaBy Tamserpo - Own work, CC BY-SA
3.0https://commons.wikimedia.org/w/index.php?curid=9957456 7

https://commons.wikimedia.org/w/index.php?curid=9957456

SATURN

• Simulation and Assignment of Traffic to Urban Road Networks
• Commercial multi-core CPU software
• Originally Developed in the 1970s by Dirck Van Vliet at Leeds University
• Used by companies and governments for planning

• Highways England
• Transport for London (TfL)
• Transport for the North (TftN)
• etc.

• Fortran 77 with OpenMP

8

SATURN Algorithms

• Iterative Equilibrium-based algorithm of Assignment
and Simulation

• Wardrop’s Equilibrium
• Assignment Phase

• Network + Demand Matrix -> Flow per road
• Different vehicles types are considered

independently (User Classes)
• Trip Matrix contains many Origins and

Destinations
• Known as Zones or Centroids

Assignment-Simulation Loop in SATURN

9

SATURN Models

• Range of scales from tiny to very very large
• Road networks are very sparse graphs

• Preprocessing step to create a denser representation
• Referred to as “Spider Network”
• Contraction Hierarchies

• Network E is far too small for the GPU
• Very useful for debugging!

• These are Very Sparse graphs, even when preprocessed
Model Size Centroids Vertices Edges
E Town 12 17 74
D Small City 547 2700 25385
C Large City 2548 15179 132600
L Metropolitan 5194 18427 192711

10

SATURN Profiling

• Serial version of SATALL
• Largest available model (L)

• London + Surrounding area

• > 11 Hour Runtime
• 97.5% in a single subroutine
• Candidate for Parallelisation
• Computes shortest paths, and traces them

accumulating flow

11

CPU Performance

Single Core CPU Multi-Core CPU

12

CPU Scaling

Single Core CPU Multi-Core CPU

• i7 6850k
• 6 cores
• 12 threads
• 3 Repetitions
• Diminishing

Returns

13

CPU Algorithm

For each User C l a s s o f v e h i c l e
For each o r i g i n c e n t r o i d

C a l c u l a t e s h o r t e s t pa ths (SSSP)
For each d e s t i n a t i o n c e n t r o i d

Trace the r ou t e updat i ng f l ow (FA)

14

CPU Algorithm

• Single Source Shortest Path (SSSP)
• Calculated for all origins
• Typically 1

4 of total nodes
• All-Pair Shortest Path (APSP) algorithms would do too much work

• Uses the D’Esopo-Pape algorithm
• Algorithmic decision in the 1970s, due to benchmarking at the time
• Switching to a modern implementation of Dijkstra’s would likely yield a speed up

• Flow Accumulation
• Trace routes between all origin-destination pairs
• Update per-edge flow value at each step
• Double precision to avoid numerical loss

15

GPU Algorithm

For each User C l a s s o f v e h i c l e (i ndependen t t a s k s)
For each o r i g i n (c e n t r o i d) c a l c u l a t e SSSP i n p a r a l l e l
For each o r i g i n −d e s t i n a t i o n p a i r accumulate f l ow i n p a r a l l e l

• Use the Bellman-Ford SSSP algorithm
• Highly Parallel, but much less-efficient than Dijkstra’s or D’Esopo-Pape

• For up to a worst-case number of iterations
• Consider each edge in the network, updating routing information.

16

Initial GPU Implementation

• Naive version of the Bellman-Ford
Algorithm

• Much, Much, Much, Much Slower...
• 364x slower
• Inefficient use of compute
• Inefficient transfer of data over PCI-e

• Non-deterministic
• Different routes with the same cost
• Order of execution is important
• Still the correct result

17

Vertex Frontier

• Improve performance through algorithmic change
• Vertex Frontier tracks which vertices could result in

an update
• Increases Efficiency
• Decrease Parallelism
• Uses more memory

• Not enough Work
• Latency bound
• Low number of threads

(< 2500 for network L)

18

Origin-Vertex Frontier

• Increase parallelism by solving multiple origins
concurrently

• Origin-Vertex Frontier tracks which origins-vertex
pairs could result in an update

• Increases Parallelism
• Uses much more memory

• Large amount of inactive threads
• imbalanced work-load

• Poor data-access pattern
• Lots of scattered accesses

19

Cooperative Thread Array

• Number of edges per node varies - imbalanced
workload

• Co-operative Thread Array (CTA)
• Threads in a block collectively work on the same

portion of the frontier
• Balances work load
• Improves L2 Bandwidth from 148GB/s to 716GB/s
• CUDA 9.0 introduces clean methods to do this

20

Iterative Improvements

• Profile and analyse performance after each
change

• Implement possible solution, and profile
again

• Resulted in
• Changing data-layout to reduce atomic

contention
• Reduced memory usage
• Improved Register Usage

21

Change of Limiting Factor

• Flow Accumulation became the slowest
part

• GPU Implementation using atomicAdd
works well on modern hardware

• atomicAdd(double) is a hardware
instruction since Pascal

• Software implementation on Kepler and
Maxwell is very slow

• Sorting based algorithm improves
Maxwell performance, but still slower
than Pascal

22

Multiple User Classes

• User classes can processed independently
• CUDA Streams for concurrent processing
• Oversubscribes the GPU, allowing the

device driver to load-balance SMs
• Provides more work to the GPU for small

models
• Paves the way for multi-gpu

23

Multiple GPUs

• Independent user classes on each GPU
• Imbalanced workload between devices

• Only assign whole user classes

24

Volta GPU Architecture

• Up to 80% performance
improvement vs 1 Titan Xp

• Speed up relative to 6 core i7
• No source code changes

• Other than updating libraries
(CUB) and CUDA version.

25

GPU Accelerated Microscopic Simulation

Microscopic Simulation

• Bottom-up Simulations
• Simulations individual vehicles and local interaction

• with other vehicles
• with the environment

• Agent Based Modelling (ABM)
• Intuitive descriptions of behaviour and interactions
• Complex behaviour emerges from simple rules

• Very Computationally expensive
• High data requirements

FLAME GPU Microscopic Simulation

26

Aimsun

• Aimsun
• Commercial multi-core CPU microscopic simulator
• Used globally within the transport industry
• Can simulate a broad array of transport networks

and infrastructure

Aim

• Demonstrate GPUs are suitable
• Implement a subset of models
• Benchmark both applications on a scalable

transport network

27

Procedurally Generated Network

• Manhattan-style grid network
• Single lane, one-way roads
• Stop-signs at junctions
• Entrances and Exits at the edge

of the simulated grid

Junction

Road Section

Turning Section

28

Aimsun CPU Performance

• Single size of grid network
• 3 repetitions
• Diminishing Returns from

additional cores

0 2 4 6 8 10

Number of Threads

0

100

200

300

400

500

600

700

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Total Simulation Time Against Number of CPU Cores

Dual Intel Xeon E5-2643 v4

Intel Core i7 4770k

29

Models

• Gipps’ Car Following Model
• Aimsun Gap Acceptance Model
• Turning Probability based Routing

• Simulated Vehicle Detectors
• Constant Vehicle Arrival

Gipps’ Car Following Model

vfree(n, t + τ) ≤ v(n, t) + 2.5a(n)τ(1 − v(n, t)/V(n))(0.025 + v(n, t)/Vt(n)
1
2

vsafe(n, t + τ) ≤ d(n)τ +

√

d(n)2τ 2 − d(n)(2[x(n−1, t) − s(n−1) − x(n, t)] − v(n, t)τ −
v(n−1, t)2

d̂(n)
)

v(n, t + τ) = min

{

vfree(n, t + τ), vsafe(n, t + τ)

}

(1)

30

FLAME GPU

• Flexible Large-scale Agent Modelling Environment
for the GPU

• Template-based simulation environment for high
performance simulation

• Agents represented as X-Machines
• Message lists for communication
• High level interface for describing agents,

abstracting the CUDA programming model away
from the user.

• State-based representation minimises divergence and
improves coalescence

flamegpu.com

31

FLAME GPU

32

FLAME GPU Communication

• Message Lists enable high performance memory access pattern
• and avoid issues with concurrent access to agent memory

• Typically the performance-limiting factor in FLAME GPU simulations
• Specialisation for typical communication patterns to improve performance

• All-to-All
• Discrete Partitioned Messaging (2D Cellular Automata)
• Spatially Partitioned Messaging (2D & 3D Continuous Agents)
• Non-optimal for road network models

33

On-Graph Communication

• Models typically need to access messages
based on the transport network

• Couple messages to the graph
• Reduce the number of messages to be

iterated by accessing messages from the
relevant edge(s)

• I.e. Gipps’ Car Following model only
requires information from the lead vehicle

Communication Messages
All-to-All 42
Spatial 18
Graph 5

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Example highlighting FLAME GPU Communication strategies 34

On-Graph Communication Performance

• Measured performance of Car following behaviour message output and input
• Higher output cost, much cheaper message input cost.

0 20000 40000 60000 80000 100000 120000 140000

Maximum No. Agents

0.1

0.2

0.3

0.4

0.5

A
ve
ra
ge

T
im
e
(m

s)

Average Execution Time for Message Output

Graph-Based

Spatial Partitioning

All-to-All

0 20 40 60 80 100 120 140

Maximum No. Agents

0

20

40

60

80

100

120

A
ve
ra
ge

T
im
e
(m

s)

Average Execution Time for Message Iteration (Car Following Model)

Graph-Based

Spatial Partitioning

All-to-All

35

Performance Benchmarking

• Scale vehicle population and environment
• Scale vehicle population for fixed size

environment
• 3 repetitions
• 1 hour of simulated time
• Multiple hardware configurations

Workstation

• Windows and Linux
• i7 4770k (4 Cores)
• GTX 1080
• Titan X (Pascal)
• Titan V

Nvidia DGX-1

• Linux
• 2x Xeon E5 2698 v4 (20 cores ea)
• 8x Tesla P100

36

Population and Environment Scale

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k
• 0.5 Million Vehicles:

• CPU - Windows

• 5447s

• GPU - Windows

• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux

• 82.04s
• 66x speed up

(Titan V)

37

Population and Environment Scale

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k

GeForce GTX 1080 (WDDM)

TITAN X (Pascal) (TCC)

• 0.5 Million Vehicles:

• CPU - Windows

• 5447s

• GPU - Windows

• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux

• 82.04s
• 66x speed up

(Titan V)

37

Population and Environment Scale

0 100000 200000 300000 400000 500000 600000

Total Vehicle Demand

10
0

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al

S
im

u
la
ti
on

T
im

e
(s
)

Average Execution Time for a 1 Hour Simulation

Aimsun 8.1 - i7 4770k

GeForce GTX 1080 (WDDM)

TITAN X (Pascal) (TCC)

Tesla P100 (Linux)

Titan V (Linux)

• 0.5 Million Vehicles:

• CPU - Windows

• 5447s

• GPU - Windows

• 174.2s
• 31x speed up

(Titan X (Pascal))

• GPU - Linux

• 82.04s
• 66x speed up

(Titan V)

37

Population Scale for Fixed Environment

20000 40000 60000 80000 100000 120000

Total Vehicle Demand

10
1

10
2

A
ve
ra
ge

T
ot
al
S
im
ul
at
io
n
T
im
e
(s
)

Average Simulation Time as Flow is Increased Grid Size 64

Aimsun 8.1 - i7 4770k

FLAME GPU - GeForce GTX 1080

FLAME GPU - TITAN X (Pascal)

50000 100000 150000 200000 250000

Total Vehicle Demand

10
1

10
2

10
3

A
ve
ra
ge

T
ot
al
S
im
ul
at
io
n
T
im
e
(s
)

Average Simulation Time as Flow is Increased Grid Size 128

Aimsun 8.1 - i7 4770k

FLAME GPU - GeForce GTX 1080

FLAME GPU - TITAN X (Pascal)

38

Runtime per Iteration

0 1000 2000 3000 4000

Iteration

0

100

200

300

400

500

600

A
ve
ra
ge

S
im

u
la
ti
on

S
te
p
T
im

e
(m

s)
Average Simulation Step Time for a 1 Hour Simulation for a 256x256 Grid

Aimsun 8.1 - i7 4770k

FLAME GPU - TITAN X (Pascal)

• Population grows as
time progresses

• Anomalous values
correlate with
detector outputs

• Every 800 iterations
(10 minutes)

39

Summary

Conclusion

• Macroscopic Assignment
• Up to 11.7x speed up on 1 Titan V vs 6 core i7
• Up to 11.8x speed up on 5 P100 vs dual socket

Xeons
• Microscopic Simulation

• Up to 66x speed up using a Titan V
• Real-time-ratio of 39x for up to 576000 vehicles

• More simulations in less time
• Large simulations possible
• Better-than-real-time simulation of 0.5 million

vehicles

40

Thank You

Supported By
• DfT Transport Technology Research Innovation Grant

(T-TRIG July 2016)

• EPSRC fellowship “Accelerating Scientific Discovery with
Accelerated Computing” (EP/N018869/1)

• Thanks to Atkins, STFC, TSC & Aimsun

Contact
• p.heywood@sheffield.ac.uk

• @ptheywood

• ptheywood.uk

• rse.shef.ac.uk

More Information
“Data-parallel agent-based microscopic road network simulation using graphics processing
units”

https://doi.org/10.1016/j.simpat.2017.11.002

41

	Road Network Simulation
	GPU Accelerated Macroscopic Simulation
	GPU Accelerated Microscopic Simulation
	Summary

