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Why Simulate Transport Networks?
.

• Increasing traffic demand globally
• UK projected increase between & : [Dep ]

• Up to % increase of car ownership
• % to % growth in UK road traffic

• Poor utilisation of existing infrastructure
• Need for improved road simulation systems [NFN∗ , UK ]

• Used for planning & trialling road network changes
• Cheaper & less disruptive than real world trials

Rush hour traffic on the M motorway
(Mat Fascione - CC BY-SA . )
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Why Visualise Transport Network Simulations?
.

• Decision makers are often not modelling
specialists [NFN∗ ]

• 3isualisation increases accessibility of
simulations

• Improves decision making

An example of traffic microsimulation visualisation
(sumo-gui)
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Our Aims
.

• Use the GPU for Agent Based Simulation of Road Network
• Using FLAME GPU (Flexible Large Scale Agent Modelling Environment for the GPU)
• Large-scale simulation of a road network
• Car following behaviour on an artificial road network

• Demonstrate performance of road network simulation using FLAME GPU
• Described in forthcoming paper “Road Network Simulation using FLAME GPU” [HRM ]

• Develop custom visualisation for the simulation
• Enable interactive simulation observation
• Minimal impact on performance
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Road Traffic Network Simulation
.



Microsimulation, Agent Based Modelling & the GPU
.

Microsimulation & Agent Based Modelling (ABM)
• Bottom up simulations - individual level with local interactions [SYGD ]

• ABM provides a natural method for describing agents and behaviours
• allows emergence of more complex behaviour

• Good for modelling congested transport networks

Why General Purpose computing on Graphics Processing Units (GPGPU)?
• Increased performance due to massively parallel architecture
• Microsimulation is well suited for GPGPU computing [SN , 4S ]

• However it is not embarrassingly parallel
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The Simulation
.

Artificial Road Network

• Scales consistently unlike real world networks
• Uniform grid of N junctions & N(N− ) roads

Gipps’ Car Following Model [Gip8 ]

• Safety distance car following model
• Considers driver and vehicle limitations
• Extensively used [CPM ]

FLAME GPU

• “Template based simulation environment” for agent based
simulation on GPU architecture [Ric ]

• Provides a high level interface for describing agents,
abstracting the CUDA programming model [Ric ]

• State-based agent representation
• Message-based communication

N = 3 N = 4 N = 5

www.flamegpu.com
github.com/flamegpu
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General Purpose computing on Graphics Processing Units
.

• Massively parallel architecture
• Perform same operation on many items of data (SIMD)

• Kernels (GPU functions) execute same code in parallel
using many threads

• Multiple memory spaces
• Memory access pattern is important for performance

• Dedicated cards connected over PCI bus
• Host-Device memory transfers are relatively slow

Nvidia Tesla C (Source - CC . )
CC .
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https://commons.wikimedia.org/wiki/File:NvidiaTesla2075.JPG
https://creativecommons.org/publicdomain/zero/1.0/deed.en


What is Geometry Instancing?
.

• Rendering multiple copies of the same geometry
• 3ertex data is copied but modified to reduce repetition

• Position
• Colour
• Animation state

• Data needs to be accessible on the GPU
• OpenGL Buffers

• Requires fewer API calls [Khr ]

Heywood P., Richmond P. & Maddock S.
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Interactive Visualisation
.

• Cross platform C++, 2penGL & libSDL[SDL]

• Mouse & Keyboard controls (no-clip)
• Simulation updated per frame (currently)
• Geometry loaded from wavefront (.obj) files
• Flat shading

Overview of visualisation
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Interactive Visualisation
.

• OpenGL Texture Buffers populated with agent data
via CUDA OpenGL Interop [Nvi ]

• Geometry Instancing [Khr] used to apply data to
models

• gvec texelFetch(gsamplerBuffer sampler, int P); [Khr ]

• Reduced number of API calls [Khr ]

• Minimises host-device memory transfers

• Fragment shader used to differentiate vehicles &
apply lighting model

Nearby view of visualisation
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How we use the GPU
.

• Road network stored in CUDA Constant Memory
• Does not change during kernels
• Maximum size to Kb currently -> CUDA
Read-only Memory

• Geometry Instancing & CUDA interop
• Avoids unnecessary host-device transfers

• FLAME GPU
• One thread per agent
• State-based representation minimises branching
• Synchronisation points defined by message
dependence

• Transparently converts between AoS & SoA
• Minimal transfer of data to host (CPU)

Host Device

Initial Agent

Data

FLAME GPU simulation 

Agent Data

Instanced Rendering

.obj model

file

Texture Buffers

TBO1 TBO2 ...

n
...

1
0

Model VBOs

PCI Bus

Instanced rendering memory transfers
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Demonstration
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Performance Impact
.

• Instanced visualisation has minimal
performance impact

• N = , length m, vehicles &
iterations

• N3IDIA GeForce GT9

Console ms
3isualisation ms
Run-time Increase . 8x
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Performance comparison between FLAME GPU
message partitioning schemes
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What Next?
.

Procedural Instancing
• Increase variation of instanced vehicles
• Procedurally generate data at runtime to modify instances
• Use simulation data such as vehicle length / type
• Applicable to many types of agents

• 3ehicles
• Pedestrians
• Environment

Other Future Work
• Analyse and visualise aggregate data using the GPU to increase accessibility
• Further performance optimisations for large populations

Heywood P., Richmond P. & Maddock S.
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.



Conclusions
.

• Highlighted difficulties of large scale GPGPU microsimulation of transport networks
• Expensive host-device memory transfers
• Number of GPU draw calls

• Described & demonstrated techniques used to combat these issues
• CUDA OpenGL Interoperability
• Geometry Instancing

• Demonstrated minimal performance impact for an example visualisation

Heywood P., Richmond P. & Maddock S.
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Gipps’ Car Following Model Equation
.

vn(t+ τ) = min
{

vn(t) + . anτ( − vn(t)/1n)( . + vn(t)/1n) ,

bnτ +

√

bn τ − bn[ [xn− (t)− sn− − xn(t)]− vn(t)τ − vn− (t) /b̂]
}

an the maximum acceleration of vehicle n

bn the most severe braking that the vehicle n will undertake

sn the effective size of vehicle n, including a margin

1n the target speed of vehicle n

xn(t) the location of the front of vehicle n at time t

vn(t) the speed of vehicle n at time t

τ constant reaction time for all vehicles

b̂ estimate of leading vehicles most severe braking
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Results: Fixed Grid Network
.
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Spatially Partitioned (radius = 5000m)
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Spatially Partitioned (radius = 250m)

• Spatially partitioned messaging
outperforms non-partitioned
messaging

• Smaller radii outperforms larger radii
beyond overhead
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Results: Fixed Grid Network - Per Agent
.
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• Distinct gradient change at agents -
hardware utilisation vs larger
message lists

• Maximum message count

Non-partitioned
Partitioned r =
Partitioned r =
Partitioned r =
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Results: Fixed Grid Network - Kernel Profiling
.
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Scaled Grid Network
.
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with a fixed vehicle density of 64 agents per 1000m

Non Partitioned Messaging

Spatially Partitioned Messaging (radius = 500m)

Spatially Partitioned Messaging (radius = 250m)

• Spatially partitioned messaging outperforms
non-partitioned beyond overhead

• Up to x performance increase for spatial
partitioning than non-partitioned
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