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Abstract. Demand for high performance road network simulation is in-
creasing due to the need for improved traffic management to cope with
the globally increasing number of road vehicles and the poor capacity
utilisation of existing infrastructure. This paper demonstrates FLAME
GPU as a suitable Agent Based Simulation environment for road network
simulations, capable of coping with the increasing demands on road net-
work simulation. Gipps’ car following model is implemented and used to
demonstrate the performance of simulation as the problem size is scaled.
The performance of message communication techniques has been evalu-
ated to give insight into the impact of runtime generated data structures
to improve agent communication performance. A custom visualisation is
demonstrated for FLAME GPU simulations and the techniques used are
described.
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1 Introduction

With the increasing number of vehicles on road networks around the world and
poor utilisation of existing road infrastructure capacity, there is a need for im-
proved systems for planning and trialling proposed changes to traffic manage-
ment system [16, 26]. To avoid making costly or risky changes in the real world,
computer modelling and simulation can be applied to evaluate proposed solu-
tions. Transport simulation models can typically be classified into one of three
categories: macroscopic, mesoscopic and microscopic. Macroscopic simulations
(top-down) treat traffic as a liquid, modelling the overall system level behaviour.
Mesoscopic simulations (middle-out) model platoons (groups of vehicles), using
aggregate functions to calculate travel times and speeds [6]. Microscopic simula-
tions (bottom-up) model the individual vehicles in the system and the interaction
between them [23], and can be considered synonymous with Agent Based Simu-
lations (ABS) [5]. In ABS behaviours are modelled at the individual level with
agents interacting with both the local environment and other agents. Higher sys-
tem level behaviours can emerge from the lower level behaviours and interactions
modelled by the system.

Agent based modelling and microsimulation are being used in place of more
traditional macro-level simulations as they offer a more natural method of de-
scribing systems and allow for the emergence of more complex behaviour. Large
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scale and more-complex microscopic simulations are computationally expensive
[3] when being processed in serial, but have been shown as suitable for accel-
eration through parallel methods [15, 20]. Each agent in the system follows the
same model, performing the same operations, as other agents of the same type,
making aspects of microsimulation SIMD (Same Instruction Many Data) in na-
ture and therefore an ideal task for General Purpose computing on Graphics
Processing Units (GPGPU), which is well suited to SIMD problems. GPGPU
computing has been shown to be effective for microsimulation of transport sys-
tems [24, 27] and the associated tasks [7], showing that it can be used to provide
computational speed-up or allow increased complexity for a similar execution
time, while using low cost hardware.

This paper demonstrates the performance implications of applying the Graph-
ics Processing Unit (GPU) to microsimulation of transport networks. It makes
a unique contribution by evaluating performance scalability through the imple-
mentation of an artificial road network in which the size of the road network
and the density of traffic within it can be effectively benchmarked. The Gipps
car following model has been implemented using the Flexible Large-scale Agent
Modelling Environment for Graphics Processing Unit (FLAME GPU ) frame-
work and the message communication techniques have been evaluated to give
insight into the impact of runtime generated data structures to improve agent
communication performance. A custom visualisation using GPU instancing has
been developed which enables interactive simulation observation. The improved
simulation performance described by this work is important in demonstrating
simulations which are able to handle the increasing scale and complexity which
are required to accurately model transport networks of increasing size. A cou-
pled visualisation has the additional benefit of ensuring that traffic simulation
is accessible to stakeholders involved in traffic management and infrastructure
changes who are often non-modelling specialists [16].

2 Related Work

Transport microsimulation models have been used to analyse and study a broad
range of driver behaviours, infrastructure layouts and the effects of traffic [4,
9, 19, 12], showing that there are real world uses for microsimulation of trans-
port systems for both analysis and planning without the need for costly and
potentially dangerous real world experimentation.

For any study of transport systems at the microscopic level, driver behaviours
such as car following [10, 25], lane changing [11], interaction with road signals
or traffic calming measures [13], amongst others, need to be modelled to achieve
a valid, fully functional system which can be used to study other aspects of
transport network behaviours.

For the purposes of this paper an example road user behaviour model is
required for implementation, car following is chosen as it is is arguably the most
important behaviour when modelling road networks at the microscopic level.
Car following is the behaviour that on a single lane road, or within an individual
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lane on sections of road with multiple lanes, vehicle drivers wish to drive at their
desired speed without colliding with the vehicle ahead [11].

The car following theory is that a driver reacts to the behaviour of the car(s)
in front. Early models were mainly concerned with the trailing car’s acceleration
being proportional to the relative speeds of each car at an earlier time, or a
‘history’ of relative speeds [14]. Later models took into account the reaction
time of the vehicle driver [10], as there is a delay between an individual receiving
stimuli and performing the correct action.

The performance limits of both the driver and vehicle also affect car following
behaviour, as safety concious drivers will ensure there is a gap large enough in
which to stop between them and the vehicle in front (limited by an acceptable
level of braking). Vehicles also have limits of acceleration performance, and so a
trailing car will accelerate with no more than the vehicle’s maximum acceleration
until it nears the desired speed (or the speed of the vehicle in front) at which
point the rate of acceleration will decrease to zero [10]. Models which are based
on the principal of following at a safe distance such as Gipps’ model are known
as safety distance models.

Other models and categories of car following models have been developed,
such as the Intelligent Driver Model proposed by Treiber et al [25]. At it’s core
this model bases the acceleration of the trailing vehicle on the ratio between the
“desired minimum gap” and the actual gap to the vehicle in front, with special
cases for scenarios such as when traffic is in equilibrium where drivers will keep
a gap to the vehicle in front which is dependant on velocity. Psycho-physical car
following models are an alternate category in which models adjust the reactions
of the driver based on the state of the vehicle [22].

3 Model

In order to demonstrate the scalable performance of Agent Based Simulations
using an accelerator such as the GPU, Gipps’ Car Following Model [10] was
selected for implementation as it is one of the most extensively used car following
models [8].

The model aims to “mimic the behaviour of real traffic”, have “parameters
which correspond to obvious characteristics of drivers and vehicles” to avoid
elaborate calibration procedures and “should be well behaved when the interval
between successive recalculations of speed and position is the same as the reac-
tion time”[10]. The model combines limits on the performance of the driver and
vehicle with the assumption that a following driver will drive in such a manner
that they can safely stop if the vehicle ahead stops suddenly.

The model states that the vehicle n should not exceed its driver’s target speed
and the vehicle’s free acceleration should increase with speed then decrease as
the desired speed is approached [10]. The inequality in Equation 1 combines
these two constraints:

vn(t+ τ) <= vn(t) + 2.5anτ(1 − vn(t)/Vn)(0.025 + vn(t)/Vn)
1
2 (1)
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an the maximum acceleration of vehicle n

bn the most severe braking that the vehicle n will undertake

sn the effective size of vehicle n, including a margin

Vn the target speed of vehicle n

xn(t) the location of the front of vehicle n at time t

vn(t) the speed of vehicle n at time t

τ constant reaction time for all vehicles
Table 1. Notation for variables used by Gipps’ car following model

The terms of Equation 1 are explained in Table 1. The limitation of braking
safely can be represented by the inequality shown in Equation 2. This takes into
consideration the following driver’s reaction time, and a margin of error on the
driver’s behalf θ = τ/2 to avoid maximum braking and an estimate of the leading

driver’s most severe braking b̂ which cannot be estimated by direct observation
[10].

vn(t+τ) <= bnτ+

√
bn

2τ2 − bn(2[xn−1(t) − sn−1 − xn(t)] − vn(t)τ − vn−1(t)2/b̂)

(2)
Assuming that if the driver travels as fast as safely possible considering ve-

hicle limitations, the new speed can be given by Equation 3.

vn(t+ τ) = min

{
vn(t) + 2.5anτ(1 − vn(t)/Vn)(0.025 + vn(t)/Vn)

1
2 ,

bnτ +

√
bn

2τ2 − bn[2[xn−1(t) − sn−1 − xn(t)] − vn(t)τ − vn−1(t)2/b̂]

} (3)

The main restriction of Gipps’ car following model is that the time-step of
the simulation needs to be set to the driver reaction time τ . The model also
relies on assumptions that drivers drive in a safe manner (which is often not the
case) and that they are capable of estimating observable characteristics of the
leading vehicle with some degree of accuracy.

4 Implementation

This section consists of four parts: the artificial road network, an overview of
FLAME GPU, how Gipps’ car following model is implemented using FLAME
GPU & the visualisation.

4.1 Scalable Artificial Road Network

For the purposes of this paper a simple, single lane, artificial grid network is
generated for agents to navigate. Road networks in the real world are designed
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with real world limitations such as terrain or the location of existing roads,
buildings and other spatial constraints. An artificial road network is preferable
for performing controlled studies as the properties of the road network are con-
sistent at different scales. The artificial road network is a uniform grid network,
generated based on the target grid size N where N >= 2, as shown in Figure 1.
The grid contains N rows and N columns of junctions, with two sections of road
between each adjacent node, hence the road network contains N2 junctions and
4N(N − 1) one-way sections of road.

N = 2 N = 3 N = 4 N = 5 N = 6

Fig. 1. Examples of the artificial road network with varying values of N . Circles rep-
resent junctions and lines represent sections of road

4.2 FLAME GPU

FLAME GPU [21] is a “template based simulation environment” for agent based
simulation on Graphics Processing Unit (GPU) architecture. Agents are repre-
sented as X-Machines which can communicate via globally accessible message
lists. Messages are crucial for interaction between agents and they can be parti-
tioned to “ensure the most optimal cycling of messages”[21].

There are currently three defined message partition schemes in FLAME GPU:
non-partitioned, discrete 2D space partitioning and 2D/3D spatially partitioned
space. Non partitioned messaging involves no filtering to reduce the number of
messages each agent must iterate; it is merely a brute force approach. Discrete
partitioned messages can be used only when sending from non mobile discrete
agents, and is therefore best suited to discrete systems using Cellular Automata
(CA) based approaches. Spatially partitioned messages originate from agents in
continuous space (such as a 2D or 3D environment). The partitioning scheme
requires a radius and environment bounds. The radius dictates the range to
which the message iteration will extend to from its originating point, while the
bounds are used to limit the area of partitioning.

Of these partitioning schemes both non partitioned messaging and spatially
partitioned messaging are of interest with potential performance implications.
Non partitioned messaging is computationally expensive (O(n2) message iter-
ation loop when reading messages) but has little overhead cost with respect
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to dynamic construction of data structures compared to partitioned messaging
schemes. Simulations using partitioned messaging generally lead to less expen-
sive message iteration loops but an increased overhead cost as long as the par-
titioning system is set-up appropriately. Both non partitioned messaging and
spatially partitioned messaging will be evaluated and the performance difference
compared.

4.3 Implementing Gipps’ Car Following Model using FLAME GPU

Each vehicle in the system is represented by an agent. The initial values of each
agent are generated by a Python script and stored in a FLAME GPU XML file
for simulation state data to be parsed at runtime and copied into device memory.

The road network is stored in CUDA constant memory (via FLAME GPU’s
Simulation Constants) as it will not change over the course of the simulation and
each agent in the simulation interacts with the same road network. This does
however impose a limit on the number of nodes and roads possible within the
system, due to the current limit of 64kB of constant memory being available. An
alternative would be to store the road network in the CUDA Read-Only Data
Cache [17] but this would restrict the GPU architectures which could be used
to CUDA Compute Capability 3.0 (Kepler) and greater.

For each step in the simulation, each agent first outputs it’s observable prop-
erties (location, velocity, etc.) as a message using the selected message partition-
ing scheme. Each vehicle then iterates through the list of relevant messages based
on the partitioning scheme to find the message from the lead vehicle. Gipps’ car
following model (Section 3) is applied to the current vehicle, using the Forward
Euler Method to calculate the vehicle’s new location and velocity. Higher-order
integration methods could be considered, with further related study on accuracy
and performance trade-offs. Agents which have reached the end of their current
segment of road randomly select a new segment from the roads connected at
their current junction.

4.4 Visualisation and Graphics Techniques

A custom, cross platform visualisation is implemented to visualise the agents
moving about the 3D world using OpenGL and Simple DirectMedia Layer [2],
written in C++. FLAME GPU stores agent data on the GPU and it is best
to avoid unnecessary and unneeded copying between device memory and host
memory so CUDA OpenGL Interoperability [18] is used to populate OpenGL
texture buffers with the location, length and orientation of each agent within
the simulation via a CUDA kernel. Instanced rendering [1] allows primitives to
be rendered at the correct world location for each agent, correctly orientated via
custom vertex shaders. Example output of the visualisation is shown by Figure
5.
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5 Experimental Results

Two sets of benchmarking experiments are carried out to evaluate 1) the perfor-
mance of the simulation as the number of agents within the system is increased,
and 2) the overall scale of simulation while maintaining a fixed vehicle to road
ratio. The two message partitioning schemes are compared and the performance
difference highlighted for each set of experiments. Agent populations are gener-
ated using the model parameters defined in Table 2 and randomly distributed
throughout the road network. The simulation has been implemented in FLAME
GPU 1.4 for CUDA 7.0. Results are obtained from an Intel Core i7 4770K ma-
chine using an NVIDIA TESLA K20c GPU with CUDA 7.0.

an sampled from the normal distribution N(1.7, 0.32) m/sec2

bn −2.0an
sn sampled from the normal distribution N(6.5, 0.32) m

Vn sampled from the normal distribution N(20.0, 3.22) m/sec

τ 2/3 seconds

b̂ the minimum of −3.0 and (bn − 3.0)/2 m/sec2

Table 2. Suggested model parameters proposed by Gipps

5.1 Vehicle scaling for static road network

The first experiment illustrates the performance scaling of the agent based sim-
ulation with respect to the number of agents in the system. A fixed grid network
of size N = 16 and road length of 10000m is used and the number of agents
varies from 28 up to 218, using both message partitioning techniques.

Figure 2 shows the performance against the number of agents, where perfor-
mance has been measured by averaging the simulation time over 100 iterations.
At very small numbers of agents, non partitioned messaging demonstrated sim-
ilar performance to partitioned messaging, but with greater numbers of agents
the gap in performance increases dramatically with each increase in agent popu-
lation size. Spatially partitioned messaging shows a similar level of scaling with
each radius, but the lower radius consistently shows higher levels of performance.

Figure 3 shows the average agent iteration performance (calculated as av-
erage iteration time / population size). With small agent counts (<= 213), as
the population size increases the simulation performance increases as hardware
utilisation increases. Larger populations (> 213) show a decrease in agent per-
formance as agent population size increases due to the increased quantity of
messages each agent reads. Non partitioned messaging shows significantly lower
per-agent performance as the brute force approach causes each agent to read a
message from each agent in the population. As the population is increased the
density of agents increases on the fixed size road network. This causes agents
using spatially partitioned communication to, on average, receive an increased
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amount of messages, but still less than would be received using the brute force
approach.

The larger population sizes show a decrease in per agent performance for
each increase in agent population, with a significant decrease in performance for
non partitioned messaging when compared to spatially partitioned messaging.

5.2 Scaling of vehicle and road network

The second experiment illustrates the performance scaling of the agent based
simulation with respect to the problem size as a whole - the number of agents
and size of grid generated have been scaled in unison, maintaining a constant
vehicle count per section of road (64 vehicles per 1000m of road) from N = 2
& 512 agents to N = 24 & 141312 agents, with a road length of 1000m. The
vehicle to road ratio is kept constant to illustrate the performance difference
from increasing the size of the problem as a whole, rather than just increasing
the density of vehicles. Both message partitioning techniques are used and the
performance difference highlighted, including using different spatial partitioning
radii (250m and 500m).

Figure 4 shows the performance against the scale of simulation, where perfor-
mance has been measured by averaging the simulation time over 100 iterations.
This shows that as the overall size of simulation is scaled up the simulation time
also increases. Non partitioned messaging shows greater performance at very
small simulation sizes compared to partitioned communication. This is due to
the additional computational overhead of spatial partitioning. Larger problem
sizes show the benefits of using a partitioned messaging scheme to reduce the
number of messages each agent must iterate through, as the performance impact
of a greater problem size is significantly less for larger problem sizes. For a grid
size of N = 24 average iteration time was approximately 44.4 & 103.4 times
quicker using spatially partitioned communication with radii of 500m & 250m
respectively than non partitioned messaging.

This experiment was initialised with uniform vehicle distribution. Whilst
uneven distributions then occur as the simulation progresses, future work needs
to consider this aspect and any associated performance implications in more
detail.

5.3 Visualisation

Running the simulation with a visualisation has a negative impact on the per-
formance of the simulation. For a simulation with grid size N = 8, road length
1000m and 8192 vehicles, 1000 iterations of simulation takes 15079ms without
visualisation compared to 16291ms with visualisation using an NVIDIA GeForce
GTX 660. This shows a 1.08x increase in simulation time when using the GPU
for both simulation and visualisation.
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Fig. 2. Average iteration execution time for fixed grid of size N = 16 against agent
population size, averaged over 100 iterations
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Fig. 3. Average iteration execution time per agent for fixed grid of size N = 16 against
agent population size, averaged over 100 iterations
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Fig. 4. Average iteration execution time for increasing Grid Size N with a fixed vehicle
density of 64 agents per 1000m, averaged over 100 iterations

(a) Nearby (b) Overview

Fig. 5. Screen captures of the custom visualisation running
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6 Conclusions

Two experiments have been carried out, demonstrating that GPUs are suitable
for Agent Based Simulation of road networks and are capable of scaling to han-
dle the increasing demands of road network simulations, and the performance
difference between message partitioning schemes is highlighted.

Both experiments show that FLAME GPU can successfully be used for agent
based simulations of road networks and can process large amounts of agents in
a reasonable time frame. The experiments also highlight the performance dif-
ference between the two message partitioning techniques. Non partitioned mes-
saging only outperforms spatially partitioned messaging when the number of
agents in the system is low enough that the additional overhead of the parti-
tioning scheme outweighs the performance improvements and so for agent based
simulations where a generally large populations of agents are used spatially par-
titioned messaging is more suitable, but the choice of spatial partitioning param-
eters need to be selected carefully. Smaller partitioning radii generally increases
the performance but the radius needs to be relevant to the target simulation so
that messages from relevant agents still reach each other.

Future work developing alternate message partitioning techniques specific to
networked systems should allow further increase in performance compared to
spatially partitioned messaging. On a road network a driver is only concerned
with vehicles on the same section of roads and connected sections of roads at
junctions. Developing a messaging scheme which limits the incoming agent mes-
sages to the road network structure should reduce the cost of the message itera-
tion loop, without too large of a performance overhead. An example visualisation
has also been described, demonstrating some of the techniques which can be used
to create custom visualisations for FLAME GPU based simulations.

References

1. OpenGL SDK glDrawArraysInstanced manpage. https://www.opengl.org/sdk/
docs/man/html/glDrawArraysInstanced.xhtml

2. Simple DirectMedia Layer (libSDL). https://www.libsdl.org/
3. Algers, S., Bernauer, E., Boero, M., Breheret, L., Di Taranto, C., Dougherty, M.,

Fox, K., Gabard, J.F.: Review of micro-simulation models. Institute for Transport
Studies (1997)
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